Functional Test Procedure Variable Air Volume Air Handler Unit AHU-8

1. Participants

Dric		icipation (Testing, Witness, etc.)
DHe	rian Toevs 7group Witness	
Dai	Party filling out this form and witnessing testing. Price	Footro
	earty filling out this form and witnessing testing <u>Brian</u>	
2.	. Prerequisite Checklist	
	The following have been started up and startup report and approved reacting the functional tracting.	ts and construction checklists submitte
	and approved ready for functional testing: Air Handling Unit – 83 [1]	m [1]
		Vater pumps [1]
		ed Water Pumps [1]
	0 011	Boxes [2]
	✓ DDC system w/ Graphics [1]	
	All control system functions for this and all interlocking per contract documents, including final setpoints and scl sensor calibrations completed.	
	Controls Contractor5	/27/10
	Controls Contractor Signature or Verbal Date	
	Vibration control report approved (if required).	
	Test and balance (TAB) completed and approved for t connected.	he hydronic systems and terminal units
	All A/E punch list items for this equipment corrected.	
	These functional test procedures reviewed and approv	ved by installing contractor.
	Safeties and operating ranges reviewed.	
	False loading equipment, system and procedures read dampers, etc.)	dy (control loops, over-ride on OSA
	Have all energy savings control strategies, setpoints a equipment and control system is capable of? If not, list	•
	DDC Program Review. Review the DDC software co	ntrol program(s) for this equipment.

Parameters, setpoints and logic sequences appear to follow the specified written sequences.

j.

k. Record of All Values for Current Setpoints, Control Parameters, Limits, Delays, Lockouts, Schedules, Etc. Changed to Accommodate Testing:

Parameter	Pre-Test Values	Returned to Pre-Test Values √	Parameter	Pre-Test Values	Returned to Pre-Test Values √
Outside Air Temperature	54	✓	Outside Air Damper Position D-1	С	~
Exhaust Damper Position D-3	С	~	Occupied Cooling Space temperature Set point	75°F	~
Return Air Damper Position D-2	0	~	Unoccupied Cooling Space temperature Set point	85°F	~
Occupied Space Heating temperature Set point	70°F	~	OA Ambient CO ₂ Sensor Reading CO ₂ -4	350 ppm	~
Unoccupied Space Heating temperature Set point	65°F	~	Zone CO ₂ Sensor Set point	750	
SA Diff. Pressure Set point. SP-1	0 – 10" w.c	✓	$RA CO_2 Sensor$ Reading CO_2	340	
2/3 Diff. Pressure Set point. SP-2	5" w.c	 ✓ 	SA Static High Limit Cutout SHL-2	5" w.c [1]	~
RA Diff. Pressure Set point. SP-3	-0.10 – +0.10" w.c	✓	Static Low Limit Cutout SLL-1	- 5.0"	~
Pre-filter Diff. Pressure Set point. DPS-1	1"w.c	~	Final filter Diff. Pressure Set point. DPS-2	1" w.c [1]	~
Mixed Air Temp. T-1	72.5		SA Temp. Leaving HW Coil T-2	72.4ºF	~
HW Coil Low limit temp. LLT-1-4	Ν	✓	SA Temp. Leaving CW Coil T-3	55⁰F	~
SA Humidity Set Point H-1	35- 85%	 ✓ 	SA High Humidity Set Point HHL-1	85%	~
SA Temperature T-4	48°F	 ✓ 	RA Temp. T-5	68.9	✓
SA Flow Meter	32,500	✓	RA Flow Meter	21,600	\checkmark

3. Sensor Calibration Checks. Check the sensors listed below for calibration and adequate location. This is a sampling check of calibrations done during Construction check listing. Test the packaged controls and DDC readings.

[&]quot;In calibration" means making a reading with a calibrated test instrument within 6 inches of the site sensor. Verify that the sensor reading (via the permanent thermostat, gage, packaged control panel (DDC) or building automation system (BAS)) compared to the test instrument-measured value is within the tolerances specified in the Construction checklist requirements (_______). If not, install offset in (DDC), (BAS), calibrate or replace sensor. Use the same test instruments as used for the original calibration, if possible.

Sensor & Location	Location OK ¹	1st Gage or Pkg & BAS Values	Instru. Meas'd Value	Final Gage or Pkg & BAS Values	Pass Y/N?
Discharge Air Temperature Supply air ductwork T-4	✓	91	90	91	Y
Return Air TemperatureReturn Air DuctworkT-5	~	68.9	70	68.9	Y
Mixed Air TemperatureAfter pre-filterT-1	√	54	54	54	Y
SA temp. Lvg. HW coil T-2	~	94	94.5	94	Y
SA temp. Lvg. CW coil T-3	✓	55	55	55	Y
Low Limit Temp. sensor LLT-1-4	~	38°F /N	N	N	Y
Alarm Co ₂ Sensor VOC-2 North Wall	✓	750/1000 alarm	1100	Y	Y
Return Air CO ₂ Sensor CO ₂₋₉	✓	390			Y
Outside Air Humidity OAH North Wall	√	56%			Y
Outside Air Temperature North Wall OAT-	✓	54	54	54	Y
Pre-filter Differential Pressure Sensor DPS-1A	~	0.1"w.c	0.1"	0.1"	Y
Final filter Differential Pressure Sensor DPS-2A	\checkmark	0.4"w.c	0.39		Y
Supply Static Pressure SP-1	√	3.5"w.c	3.5	3.5"w.c	Y
Hot water Control valve HCV-C	~	С	С	с	Y
Chilled water Control valve	~	С	С	с	Y
Humidifier Valve Command SAHMV-C	~	С	С	с	Y
UV Light Status UV-S	✓	0	0	0	Y
SA Smoke detector Status SD-1	~	N	N	N	Y
RA Smoke detector Status SD-2	✓	N	N	N	Y
Supply Fan [SFN-A] Command SFNA-C	~	E	Е	E	Y
Supply Fan [SFN-A] Status SFNA-S	~	о	0	0	Y
Return Fan [RFN] Command RFN-C	✓	E	E	E	Y

Sensor & Location	Location OK ¹	1st Gage or Pkg & BAS Values	Instru. Meas'd Value	Final Gage or Pkg & BAS Values	Pass Y/N?
Return Fan [RFN] Status RFN-S		ON	ON	ON	Y
* Return High Suction Sensor SLL-2		-2.75"	-2.76"	-2.75"	Y
Low Pressure Switch SLL-1		N	N	N	Y
Outside Air damper Control OAD-1-C		E	Е	E	Y
Outside Air damper Status OAD-1-S		О	0	О	Y
Exhaust Air damper Control EAD-3-C		E	E	E	Y
Exhaust Air damper Status EAD-3-S		0	0	0	Y
Mechanical Room Return Air damper Control RAD-2-C		E	E	E	Y
Mechanical Room Return Air damper Status RAD-2-S		С	С	С	Y
Mechanical Room Ventilation Air damper Control RAD-4-C		E	Е	E	Y
Mechanical Room Ventilation Air damper Status RAD-4-S		С	С	С	Y
Mechanical Room Ventilation Air damper Control RAD-5-C		E	Е	E	Y
Mechanical Room Ventilation Air damper Status RAD-5-S		С	С	С	Y

¹Sensor location is appropriate and away from causes of erratic operation.

4. Device Calibration Checks. The actuators or devices listed below checked for calibration. This is a spot check on a sample of the calibrations done during Construction check listing and startup. "In calibration" means observing readout in the BAS and going to the actuator or controlled device and verifying that the BAS reading is correct. For items out of calibration or adjustment, fix now if easy, via an offset in the BAS, or a mechanical fix.

Device or Actuator & Location	Procedure / State	1st Pkg'd Value	Site Observation	Final Pkg'd Reading	Pass Y/N
Outside air damper position	1. Closed	С	С		Y
** OAD-1 FC	2. Full open	0	0		Y
	3. Intermediate position	60%	60%	60%	Y
	4. Remove power (closed)	С	C		Y
Return air damper position	1. Closed	С	C		Y
** RAD-2 FO	2. Full open	0	0		Y

Device or Actuator & Location	Procedure / State	1st Pkg'd Value	Site Observation	Final Pkg'd Reading	Pass Y/N
	3. Intermediate position	40%	40%	40%	Y
	4. Remove power (open)	0	0		Y
Exhaust/Relief air damper	1. Closed	С	С		Y
position ** EAD-3 FC	2. Full open	0	0		Y
	3. Intermediate position	50%	50%	50%	Y
	4. Remove power (closed)	С	С		Y
Mech. Rm. Return air damper	1. Closed	С	С		Y
position ** MRAD-4a	2. Full open	0	0	0	Y
FO	4. Remove power (open)	0	0		Y
Mech. Rm. Return air damper	1. Closed	С	С	С	Y
position ** MRAD-4b	2. Full open	0	0		Y
FC	4. Remove power (closed)	С	С		Y
Mech. Rm Ventilation air	1. Closed	С	С	С	Y
damper position **	2. Full open	0	0		Y
MRVAD-5 FC	4. Remove power (closed)	С	С		Y
Mech. Rm Ventilation air	1. Closed	С	С	С	Y
damper position **	2. Full open	0	0		Y
MRVAD-6 FC	4. Remove power (closed)	С	С		Y
Coiling coil valve position or	3. Full closed	С	С	С	Y
command and Stroke	2. Intermediate position	50%	50%		Y
* (CCV-1) FLP	1. Full open	0	0		Y
	4. Remove power (last position)	0	0		Y
Heating coil valve position or	3. Full closed	С	С		Y
command and Stroke	2. Intermediate position	50%	50%	50%	Y
* (HCV-1) FO	1. Full open	0	0		Y
	4. Remove power (open)	0	0		Y
Humidifier valve position or	3. Full closed	С	С	С	Y
command and Stroke	2. Intermediate position	50%	50%		Y
* (HMV-V) FC	1. Full open	0	0		Y
	4. Remove power (closed)	С	С		Y

* <u>Valve Operation:</u>

<u>Procedure 1.</u> Command the valve to the full open position. Verify that reading at the BAS reasonably corresponds to the actual valve position.

<u>Procedure 2.</u> Command the valve to an intermediate position like 50%. Verify the readings at the BAS reasonably correspond to the actual position.

<u>Procedure 3.</u> Command the valve to the full closed position. Verify the reading at the BAS reasonably corresponds to the actual position.

<u>Procedure 4.</u> Remove control power to the valve. Verify the valve either springs closed or open. Refer to the table above for the correct position.

* Damper Operation:

1. Command damper closed or shut unit off and verify that damper is shut and BAS reads shut.

2. Do the same, commanding damper fully open.

Device or Actuator & Location	Procedure / State	1st Pkg'd Value	Site Observation	Final Pkg'd Reading	Pass Y/N
	ermediate position and verify that damport the damper springs closed or open.	er is partially	shut and BAS rea	ads same.	

5. Verification of Misc. Construction Checks.

Misc. site checks of the Construction checklist and startup reports completed successfully. Pass? Y / N $__Y$

General Conditions of Test

Time of Day / Duration:	8:00 AM	_
Weather Conditions:	54.6°F Overcast / Sunny & Warm	
Unusual Conditions:		-
Notes:		

6. Functional Testing Record

Test	Mode ID	Test Procedure (including special conditions)		Ex	pected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
	UNIT SHUT DOWN	1) Index the unit off.	1)		rify by visual inspection that: The supply fan [SF-A] is off? The return fan [RF-A] is off?	Y Y	
				c)	OA-Damper [OAD] [D-1] is closed?	Ŷ	
				d)		Y	
				e)	Exhaust/Relief air damper [EAD] [D-3] is closed?	Y	
	1			f)	Mech. RM. RA-Damper [MRAD] [D-4] is closed?	Y	
				g)	Mech. RM. Ventilation Damper [MRVAD] [D-5] is closed?	Y	
				h)	Mech. RM. Ventilation Damper [MRVAD] [D-6] is closed?	Y	
				i)	Humidifier valve (HMV) is closed?	Y	
				j)	Cooling coil valve [CCV-1] is closed?	Y	
				k)	Heating coil valve [HCV-1] is closed?	Y	
				I)	0	Υ	
	2 UNIT OCCUPIED CYCLE COOLING	 Unit indexed to the occupied mode. Outside Air above 60° F. Economizer is disabled. 	1)		rify by visual inspection that: The OA-Damper [D-1] modulates with the RA-Damper [D-2] to maintain discharge air temperature of [55° F]?	Y	
				b)	Exhaust/Relief Damper [EA/RD] [D-3] is closed?	Y	
				c)	Mech. RM. RA Damper [MRAD] [D-4a] is closed?	Y	
				d)	[D-4b] is closed?	Y	
				e)	Mech. RM. Ventilation Damper [MRVAD] [D-5] is closed?	Y	
				<u>f)</u>	Mech. RM. Ventilation Damper	Y	no 7 of 15

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
			[MRVAD] [D-6] is closed?g) Humidifier valve (HMV) is closed?	Y	
			 h) The supply fan [SF-A] will be enabled? 	Y	
			i) The return fan [RF-1] shall be enabled?	Y	
			 j) The cooling coil valve [CCV-1] will modulate to maintain discharge air temperature of [55° 	Y	
			F]? [F]. k) Heating valve [HCV-1] is disabled?	Y	
		 Adjust the discharge air temperature [T-4] up to call for cooling. 	 2) Verify by visual inspection that: a) The OA-Damper [D-1] moves to minimum position? 	Y	
		Adjusted Setpoint [].	 b) RA-Damper [D-2] modulates to reverse match the OA-Damper [D-1]? 	Y	
			 c) Exhaust/Relief Damper [D-3] is at minimum? 	Y	
			 d) The supply fan [SF-A] is energized? 	Y	
			e) SA flow is established?	Y	
			f) The return fan [RF-1] is energized?	Ý	
			 g) The cooling coil valve [CCV-1] will modulate to maintain discharge air temperature of [55° 	Y	
		 Cause the low limit sensor [LLT- 1-4] to register below setpoint [38° F] discharge temperature. 	 F]? [57F]. 3) Verify by visual inspection that: a) The cooling coil valve [CCV-1] will modulate to 50%? 	Y	
		 4) Cause the supply air temperature [T-4] to be 5° F below the set point. 	4) Verify by visual inspection that:a) An alarm is generated?	Y	
		5) Cause the SA fan [SF-A] proof	5) Verify by visual inspection that:		

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
		and the fan status to indicate	a) An alarm is generated?	Y	
		they do not match for 30 sec.	 b) OA-Damper [OAD] [D-1] is closed? 	Ň	Dampers not sequenced to fail.
			c) RA-Damper [RAD] [D-2] is open?	Ν	
			 d) Exhaust/Relief air damper [EAD] [D-3] is closed? 	Y	
		 Cause the SA fan [SF-A] to be in hand and the fan status on and commanded off for 30 sec. 	6) Verify by visual inspection that:a) An alarm is generated?	Y	
		 Cause the SA fan [SF-A] runtime to exceed the users limit. [10000 Hrs] 	7) Verify by visual inspection that:a) An alarm is generated?\	Y	
		8) Cause the duct static pressure to decrease by adding zones calling for cooling. [1.5" w.c.]	a) The supply fan [SF-A] VFD will increase the fan speed to	Y	
			 maintain the setpoint? [1.8"w.c.] b) The return fan [RF-1] VFD will increase the fan speed to maintain the setpoint? 	Y	
		9) Cause the duct static pressure to increase by dropping zones calling for cooling. [1.5" w.c.]	 9) Verify by visual inspection that: a) The supply fan [SF-A] VFD will decrease the fan speed to 	Y	
			maintain the setpoint? [1.3"w.c.] b) The return fan [RF-1] VFD will decrease the fan speed to maintain the setpoint?	Y	
		10) Cause the Supply Fan [SF-A] VFD to fault.	10) Verify by visual inspection that:a) An alarm is generated?	Y	
		11)Cause the RA fan [RF-A] proof and the fan status to indicate they do not match for 30 sec.	11) Verify by visual inspection that:a) An alarm is generated?	Y	
		12) Cause the RA fan [RF-A] to be in hand and the fan status on and commanded off.	12) Verify by visual inspection that:a) An alarm is generated?	Y	
		13) Cause the RA fan [RF-A]	13) Verify by visual inspection that:		

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
		runtime to exceed the users	a) An alarm is generated?	Y	
		limit [10000 Hrs.]. 14) Cause the Return Fan [RF-A] VFD to fault.	14) Verify by visual inspection that:a) An alarm is generated?	Y	
	UNIT OCCUPIED CYCLE HEATING	 Outside air temperature below 65° F. Adjusted OA Setpoint []. 	 Verify by visual inspection that: a) Supply Fan [SF-A] is enabled? b) The Return fan [RF-1] is enabled? c) The OA-Damper [D-2] is set to minimum outside air position? d) The RA-Damper [D-1] moves to intermediate position? [Reverse 	Y Y Y Y	
			Tracks the OA-D amper] e) Exhaust/Relief Damper [EA/RD] [D-3] is closed? f) Heating coil valve [HCV-1] is	Y Y	
			enabled? g) UV light is activated? h) Cooling [CCV-1] is disabled?	Y Y	
		 2) Cause the discharge air temperature to call for heat Adjusted SA Setpoint []. 	 Verify by visual inspection that: a) Heating coil valve [HCV-1] modulates to maintain discharge temperature? 	Y	
		 3) Cause the discharge temperature to be 5° F less than set point for 1 minute. 	a) An alarm is registered?	Y	
		4) Cause the zone static pressure to increase by deleting zones calling for heating	 4) Verify by visual inspection that: a) The supply fan [SF-A] VFD will decrease the fan speed to maintain the setpoint? 	Y	
			b) The return fan [RF-1] VFD will decrease the fan speed to maintain the setpoint?	Y	
		5) Cause the return fan signal to be off and the fan status to indicate the fan is running.	5) Verify by visual inspection that:a) An alarm is generated?	Y	
4	ECONOMIZER	1) Outside air temperature below 65° F.	 Verify by visual inspection that: 		

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
		a. OA Enthalpy calculation is	a) Supply Fan [SF-A] is enabled?	Y	
		below 22 btu/lb.	b) The Return fan [RF-1] is	Y	
		b. OA temp < RA temp.	enabled?		
		c. OA Enthalpy < RA	c) The OA-Damper [D-2] is set to	Y	
		Enthalpy.	minimum outside air position?		
		d. SA fans have flow.	d) The RA-Damper [D-1] moves to	Y	
		Adjusted OA Setpoint	intermediate position? [Reverse		
		[60].	Tracks the OA-D amper]		
			e) Exhaust/Relief Damper [EA/RD]	Y	
			[D-3] is at minimum?		
			f) Mixed air temp set point 2° F	Y	
			less than discharge air set		
			point? g) Heating coil valve [HCV-1] is	Y	
			g) Heating coil valve [HCV-1] is enabled?	•	
			h) UV light is activated?	Y	
			i) Cooling is disabled?	Ý	
			2) Verify by visual inspection that:	•	
		2) Cause the discharge temp to be	a) Exhaust/Relief Damper [EA/RD]		
		40° F.	will modulate closed?	Y	
			Verify by visual inspection that:		
		3) Cause the economizer damper to	a) The cooling coil valve [CCV-1]	Y	
		be greater than 90%.	will modulate to maintain		
			discharge air temperature of [55°		
			F]? [55°F].		
			Verify by visual inspection that:		
		4) Cause the mixed air temperature	a) An alarm is generated?	Y	
			5) Verify by visual inspection that:		
		5) Cause the mixed air temperature	a) An alarm is generated?	Y	
├ ── <mark>↓</mark>		to be above 90° F for 1 min.			
HI SHI	UMIDIFICATION	1) With flow proven through the	1) Verify by visual inspection that:	V	
•		supply fan [SF-A] adjust the	a) The supply air humidification	Y	
		return air relative humidity set	steam valve modulates open to maintain the exhaust air relative		
		point to below the stpt. [50%]. Valve at 25%	humidity.		
			numuny.		
		2) With the humidifier still activated,	2) Verify by visual inspection that:		
		adjust the supply air humidity	a) The supply air humidification		

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response Pass Notes [Write ACTUAL response in brackets or circle] Y/N Y/N
		 setpoint to be [75% adj.]. 3) With the humidifier still activated, adjust the supply air humidity setpoint to be [80% adj.] 	steam valve modulates toward closed?Y3) Verify by visual inspection that: a) The supply air humidification steam valve is closed?Y
		 4) With the humidifier still activated, and the supply fan running for [30 min. adj.] adjust the supply air humidity setpoint to be [90%] adj. or less than 35% humidity 	 4) Verify by visual inspection that: a) An alarm is generated for the supply air humidification. Y [91%]
		adj. for 5 min.] 5) Return all setting to normal.	 5) Verify by visual inspection that: a) All valves and alarms are returned to normal.
€	CO₂ Monitoring [350 - 450 ppm] normal [750 ppm] adj. normal	 Cause return air sensor to go to [850 ppm]. CO₂ Level indicated [<u>350</u>] Cause return air sensor to go to [1100 ppm] for 1 minute. 	 Verify through visual inspection: a) The OA-Damper [D-2] shall modulate open and Return Damper [D-1] shall modulate closed to maintain the return air level to 750 ppm? Verify the following through visual inspection:
[SAFTIES / ALARMS	 Cause the low limit temperature to be below setting. [38° F]. Adjusted Setting 	(a) Yes Y (b) No Y 1) Verify by visual inspection that: Y (a) Supply Fan [SF-A] shall be Y (b) OA-Damper [OAD] [D-1] is Y
		[].	 closed? c) RA-Damper [RAD] [D-2] is Y open? d) Exhaust/Relief air damper [EAD] Y [D-3] is closed? The acadima acid value [CCV 1]
			 e) The cooling coil valve [CCV-1] Y will modulate to 50%? f) Heating coil valve [HCV-1] is in Y

Test	Mode ID	Test Procedure	Expected and Actual Response [Write ACTUAL response in	Pass Y/N	Notes
		(including special conditions)	brackets or circle]		
			open? g) An alarm is received at the DDC system? 2) Verify by visual inspection that:	Y	
		2) Cause the SA [High] static pressure switch [SHL-1] to trip	a) Supply Fan [SF-A] shall be disabled?	Y	
		for [1] one minute. [25% greater than setpoint]	b) The Return fan [RF-1] shall be disabled?	Y	
		Note: Supply fan has to be running for at least 30 minutes.	 c) An alarm is received at the DDC system? 	Y	
		 Cause the RA [Low] static pressure switch [SLL-1] to trip 	 Verify by visual inspection that: a) Supply Fan [SF-A] shall be disabled? 	Y	
		for [1] one minute. [25% less than setpoint].	b) The Return fan [RF-1] shall be disabled?	Y	
		Note: Supply fan has to be running for at least 30 minutes.	 c) An alarm is received at the DDC system? 4) Verify by visual inspection that: 	Y	
		4) Cause the RA [High Negative] static pressure switch [SLL-2] to	 a) Supply Fan [SF-A] shall be disabled? 	Y	
		trip for [1] one minute. [25% less than setpoint].	b) The Return fan [RF-1] shall be disabled?	Y	
		Note: Supply fan has to be running for at least 30 minutes.	c) An alarm is received at the DDC system?	Y	
		5) Reset switches.	5) Verify by visual inspection that:a) Switch is reset?	Y	
		6) Cause the [High] humidity sensor	6) Verify by visual inspection that:a) Humidity Valve actuator shall close?	Y	
		to trip. [Safety set at 90%]	 b) An alarm is received at the DDC system ONLY IF THE COOLING COIL IS NOT OPERATING? 	Y	
		7) Cause the [Low] humidity sensor to trip. [Safety set at 30%]	7) Verify by visual inspection that:a) An alarm is received at the DDC system?	Y	
			8) Verify by visual inspection that:a) Switch is reset?	Y	

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
		 8) Reset switches. 9) Cause the return air flow to be higher than setpoint for [1] one minute. [25% higher than setpoint] 	9) Verify by visual inspection that:a) An alarm is received at the DDC system?	Y	
		 Note: Supply fan has to be running for at least 2 minutes. 10) Cause the return air flow to be less than setpoint for [1] one minute. [25% less than setpoint] 	10) Verify by visual inspection that:a) An alarm is received at the DDC system?	Y	
		 Note: Supply fan has to be running for at least 2 minutes. 11) Cause the supply air temperature to be 5°F above 	11) Verify by visual inspection that:a) An alarm is received at the DDC system?	Y	
		setpoint. 12) Cause the supply air temperature to be 5ºF below	12) Verify by visual inspection that:a) An alarm is received at the DDC system?	Y	
		setpoint.13) Cause the supply air smoke detector to detect products of	 13) Verify by visual inspection that: a) Supply Fan [SF-A] is disabled? b) The Return fan [RF-1] shall be disabled? 	Y Y	
		combustion.	 c) OA-Damper [OAD] [D-1] is closed? d) RA-Damper [RAD] [D-2] is 	Y	
			open? e) Exhaust/Relief air damper [EAD] [D-3] is closed? f) An alarm is received at the DDC	Y Y	
		14) Cause the return air smoke	system? 14) Verify by visual inspection that: a) Supply Fan [SF-A] is disabled? b) The Return fan [RF-1] shall be	Y Y	
		detector to detect products of combustion.	 disabled? c) OA-Damper [OAD] [D-1] is closed? 	Y Y	

Test	Mode ID	Test Procedure (including special conditions)	Expected and Actual Response [Write ACTUAL response in brackets or circle]	Pass Y/N	Notes
		 15) Cause the pre-filter differential pressure to exceed setpoint. 16) Cause the final filter differential pressure to exceed setpoint. 17) Cause the return air temperature to be greater than setpoint. [90°F] 18) Cause the return air temperature to be less than setpoint. [45°F] 19) Cause the supply air temperature to be greater than setpoint. [120°F] 20) Cause the supply air temperature to be less than setpoint. [45°F] 	 d) RA-Damper [RAD] [D-2] is open? e) Exhaust/Relief air damper [EAD] [D-3] is closed? f) An alarm is received at the DDC system? 15) Verify by visual inspection that: a) An alarm is received at the DDC system? 16) Verify by visual inspection that: a) An alarm is received at the DDC system? 17) Verify by visual inspection that: a) An alarm is received at the DDC system? 17) Verify by visual inspection that: a) An alarm is received at the DDC system? 18) Verify by visual inspection that: a) An alarm is received at the DDC system? 19) Verify by visual inspection that: a) An alarm is received at the DDC system? 20) Verify by visual inspection that: a) An alarm is received at the DDC system? 	Y Y Y Y Y Y	

Record Foot Notes

¹Sequences of operation specified in Contract Documents (attached).

²Mode or function ID being tested, per testing requirements section of the project Specifications.

³Step-by-step procedures for manual testing, trend logging or data-logger monitoring. ⁴Include any test tolerances that would constitute a passing condition.

⁵Record any permanently changed parameter values and submit to Owner.

-- END OF TEST --